1

Technical Documentation
dataNow! Data Analysis Chatbot

Naveen Prabakar

August 3, 2025

Overview

datalNow! is an intelligent chatbot platform designed to facilitate data exploration, visualization,
statistical analysis, and machine learning operations via a user-friendly chat interface. Built with
Flask, it leverages popular Python data science libraries and seamlessly integrates with MongoDB
for robust, persistent storage of large datasets.

2

Architecture

2.1 Technology Stack

3

Backend Framework: Flask (Python)
Data Science Libraries: pandas, seaborn, matplotlib, numpy, scipy, scikit-learn

ML Integrations: scikit-learn (ML models), OpenAl API (code/insight generation), Gemini
API (graph/table analysis)

Database: MongoDB (pymongo)
Session Management: Flask session
Frontend: HTML rendered with Flask’s Jinja2 templating

Miscellaneous: pdfkit (PDF generation), Pillow (Image processing)

Core Features

3.1 Data Upload & Storage

Endpoint: /upload (POST)
File Support: CSV
Storage Logic:

— Small files are serialized and stored in the Flask user session.
— Larger files (over MAX_SESSION_SIZE) are stored in MongoDB as JSON.

e Upload and temporary folders are created if they do not exist.



3.2 Chat Interface
e Endpoint: / (GET)

o Initializes with a welcome message, example commands, and resets session data.

3.3 Data Query, Insight, and Visualization

1. Data Processing

e User commands are sent to the OpenAl API with dataframe info and description.
e OpenAl returns only the Python code required.

e Code is executed securely on the server in a restricted namespace.
2. Output Handling

e Tabular: Converted to HI'ML and tracked for report inclusion.
e Visualizations: Saved as images (Base64) for embedding.

e Other: Returned as plain messages or text.

3. Examples of Supported Prompts

Data exploration (showing rows, summaries)

Data manipulation (sort, filter)

Visualization (bar, line, box, scatter, heatmap)

ML tasks (regression, classification, clustering)

Statistical analysis (mean, t-tests, correlations)

3.4 Al-Powered Table & Graph Analysis

e Functions: analyze _table, analyze_graph
o API: Gemini (Google Generative AI)
e Input: Saved table (HTML) or plot (PNG)

e Output: Expert textual insights added to exported PDF reports

3.5 Report Generation

e Endpoint: /download pdf

e All tables and graphs, with Al-generated commentary, are combined into an HTML report and
converted to PDF.

3.6 Chat History Retrieval

e Endpoint: /get_chat history

e Returns session chat history in JSON.



3.7 Helper Commands
e !'help — Returns sample prompts.

e !info — Returns information about the system.

4 Session and State Management

e Session Variables: Store DataFrame, chat history, results, and prompts.

e Global Variables: lista (all outputs for PDF), prompts (paths of tables/graphs).

5 Security Considerations

e API Keys: Loaded securely from environment variables.
e Code Execution: Restricted environment, no Python imports allowed in executed code.

e File Operations: Checks and gracefully handles file and data errors.

6 Customization and Extension

e Easily add endpoints for new analyses.
e MongoDB supports large-scale data.

e UI and backend extensible for advanced features and templates.

7 Deployment

e Default: Flask server at 0.0.0.0:10000

e Deployment Recommendation: Run behind a reverse proxy (e.g., nginx), enable HTTPS,
use production environment variables.

8 Example Workflow

1. User uploads CSV to /upload.

2. DataFrame gets stored appropriately.
3. User sends a data analysis command.
4. Server queries LLM API, executes code, and returns output (table, plot, or analysis).
5. User downloads report with embedded charts and AT insights.
9 Notes

e Designed for analysts, students, and business users; no code required on the client side.

e Modular and ready for extension by engineering teams or individuals.



	Overview
	Architecture
	Technology Stack

	Core Features
	Data Upload & Storage
	Chat Interface
	Data Query, Insight, and Visualization
	AI-Powered Table & Graph Analysis
	Report Generation
	Chat History Retrieval
	Helper Commands

	Session and State Management
	Security Considerations
	Customization and Extension
	Deployment
	Example Workflow
	Notes

