
Technical Documentation
Anime Trivia Discord Bot

Naveen Prabakar

August 3, 2025

1 Overview

This document describes the architecture, functionalities, and design of the Anime Trivia
Discord Bot. This bot provides interactive multiple-choice anime quizzes to Discord servers,
supports multi-user participation, tracks scores and histories, and allows for language translation
of questions.

2 Technology Stack

• Discord API Wrapper: discord.py with discord.ext.commands and UI components

• Language Translation: Custom Translate module

• Question Management: Custom questionBank module

• Language: Python

• Cloud Compute: AWS EC2

• Image Storage: AWS S3

• Database: AWS RDS (MySQL)

3 Cloud Deployment Architecture

The Anime Trivia Discord Bot is deployed using Amazon Web Services (AWS) services for
scalability, reliability, and managed resource allocation:

• AWS EC2 (Elastic Compute Cloud): Hosts the main Python application, running the
Discord bot logic and handling real-time interactions and commands.

• AWS S3 (Simple Storage Service): All static images (including anime quiz images) are
uploaded, retrieved, and stored securely in S3 buckets. This enables efficient, scalable static
asset management and offloads binary storage from compute instances.

• AWS RDS (Relational Database Service): Core game/user data, scores, and question
banks are managed in a scalable, managed database.

The deployment pipeline allows for smooth updates, monitoring, and scaling as user demand
grows, while AWS services ensure redundancy, data durability, and security.

1

4 Core Features

4.1 Interactive Quiz Game

• Anime Selection: Users pick an anime from a preset list via the !anime [name] command.

• Joining the Game: Users can join the game session in their server using interactive Discord
buttons.

• Question Delivery: Presents questions with multiple-choice options and interactive answer
buttons (A/B/C).

• Score Tracking: Scores are tracked per-user per-session, with a command to view the
current score (!current).

• Game Hosting: Only the host (the user who started the session) can control the game flow
(e.g., advance to the next question, change language, end game).

• Endgame Summary: Leaderboard is shown at the end of each round.

• History Command: Users can view their cumulative historical scores for each anime
(!history [anime]).

4.2 Language Support

Game supports dynamic translation of questions and choices to a selected language via the
!language [lang] command (host only).

4.3 User Commands

• !hello: Greets the user and offers introductory information.

• !options: Lists all available anime quizzes.

• !more: Details game instructions and available features.

• !anime [anime]: Starts a quiz session for the selected anime.

• !language [lang]: Changes language for the session (host only).

• !current: Shows the user’s score for the ongoing session.

• !history [anime]: Displays the user’s history for a particular anime.

• !end: Host ends the session, showing a leaderboard and saving scores.

• Answering: Users answer questions via buttons (A/B/C).

4.4 Multi-Server and Multi-User Support

Server-specific data is isolated, allowing multiple games to run in different servers or channels
without interference. All participating users’ scores in a server are tracked individually.

2

5 Architecture Description

5.1 Data Structures

• server data (dict): Maintains per-server session state such as participants, current ques-
tion, scores, language, and permissions.

• option (dict): Static dictionary mapping each anime to the number of available questions.

5.2 Game Flow

1. User invokes !anime [anime] to start a session. Host is set as the command invoker.

2. Bot posts instructions and session image (from S3), initializes server/player data.

3. Users click the Join button to enter the game.

4. Host clicks Next to begin. Bot asks a randomly-sequenced question, posting answer buttons.

5. All users select an answer via buttons. Only their first answer is counted for that question.

6. Bot updates scores; users are notified if correct/incorrect.

7. Host progresses through questions with Next.

8. Session can be ended anytime by the host with !end, which publishes a leaderboard and
resets state.

6 Modularity and Extensibility

• QuestionBank Module: Responsible for fetching, randomizing, and storing questions/re-
sults; easily extensible for more content or new data backends.

• Translate Module: Abstracts translation logic, facilitating integration of external APIs or
more languages.

• Button-based UI: Interaction logic can be extended for more types of questions or answer
formats.

• Permissions: Designed with host/moderator control for game integrity.

7 Security and Error Handling

• Session Isolation: Server-specific server data prevents cross-server data leakage.

• Host Verification: Only hosts can progress the session or change settings/language.

• Input Validation: Checks for game state and user permissions before taking actions.

• Ephemeral Messages: Private feedback for some responses via ephemeral flag.

• No Token Exposure: Discord bot token, database credentials, and S3 keys are managed
securely (environment variables/IAM).

3

8 Example Usage

!anime blackclover

Users react to join. Host presses "Next".

Question appears, users pick A/B/C.

!current

Displays your current score in the session.

!end

Host ends the session, leaderboard shown.

!history bleach

Returns your historical score for ’bleach’ quiz.

9 Deployment and Configuration

• Application code is run on an AWS EC2 instance with suitable compute and memory re-
sources.

• All images are managed through AWS S3, minimizing storage requirements and bandwidth
on the EC2 instance.

• Core bot data, such as scores and question banks, are persisted in AWS RDS for reliability
and low-latency querying.

• Environment variables or AWS IAM roles are used for secure credentials management (Dis-
cord token, RDS endpoint, S3 credentials).

• The bot requires network access to Discord’s API, S3, and RDS endpoints.

• Regular AMI snapshots and/or database backups are recommended for disaster recovery.

10 Further Improvements

Possible future extensions include:

• Per-user stats dashboard

• Timed questions and speed-based scoring

• Automated retrieval and integration of new anime/questions

• Admin moderation tools and anti-cheating logic

• Persistent user preferences (saved language, color themes)

4

	Overview
	Technology Stack
	Cloud Deployment Architecture
	Core Features
	Interactive Quiz Game
	Language Support
	User Commands
	Multi-Server and Multi-User Support

	Architecture Description
	Data Structures
	Game Flow

	Modularity and Extensibility
	Security and Error Handling
	Example Usage
	Deployment and Configuration
	Further Improvements

