
Technical Documentation
ARM Assembly Disassembler

Naveen Prabakar

August 3, 2025

1 Overview

This project implements a simple ARM-like assembly language disassembler that reads binary
machine code from a file, decodes the instructions, and outputs their string assembly represen-
tation.

The program processes a binary input file, interprets 32-bit instructions according to ARM
instruction formats, and translates them into human-readable assembly mnemonic instructions
with their operands.

2 Key Components

2.1 Classes

PA2 Main entry class:

• Reads machine code bytes from input file.

• Processes each 4-byte instruction.

• Uses Register and Output classes to decode instructions.

• Prints disassembled assembly instructions sequentially.

• Detects labels for branches and inserts appropriate labels in output.

Register • Encapsulates bit manipulation logic for a 32-bit binary instruction.

• Provides methods to extract specific parts of the instruction such as registers (Rd, Rn,
Rm), immediates, addresses, and shifts.

• Contains utility to convert register numbers to their assembly register names (e.g., SP,
XZR, FP, LR, or X0–X31).

• Handles sign extension and conversion of immediate values for negative numbers based
on instruction type.

Output • Maintains a lookup table to map opcode binary values to instruction mnemonics.

• Provides a method to identify which opcode form an instruction matches.

• Decodes the binary instruction into the appropriate assembly language mnemonic with
correct operands using the Register class.

• Handles formatting of branch labels and condition codes.

• Returns the string representation of the decoded instruction.

1



3 Program Flow

1. Reading the Input:

• The PA2 class opens a binary input file containing the machine code.

• The file is read 4 bytes at a time (32 bits per instruction).

2. Instruction Decoding:

• For each 4-byte instruction read, an Register instance is created to analyze the fields.

• An Output object uses the extracted opcode bits and the Register methods to decode
to the corresponding assembly instruction.

• The opcode-to-mnemonic mapping is done using a hashtable initialized in Output.

3. Label Handling:

• Branch instructions compute target addresses with sign-extended offsets.

• Labels are generated for jump targets to improve human readability.

• Labels are inserted before instructions at indicated locations.

4. Output Generation:

• The resulting assembly instruction strings are printed to standard output sequentially.

• Label identifiers (e.g., label1:) are included as appropriate.

4 Important Implementation Details

4.1 Opcode Decoding Logic

• Output.checkopcode(int) extracts and matches opcode bits of various lengths (6, 8, 10,
11 bits) against a hashtable of supported opcodes.

• Once opcode is identified, it uses that mnemonic to format operands.

• For I-type (immediate) instructions like ADDI, ANDI, immediates are decoded with sign ex-
tension.

• Branch instructions handle conditional flags and construct labels with offsets.

4.2 Register Encoding

• Registers are decoded from specific bit fields:

– Rd, Rn, Rm extracted at fixed bit positions.

– Special registers like SP, FP, LR, and XZR are named appropriately.

4.3 Sign Extension

• Immediate values for instructions that use them (like ADDI) are sign-extended as per ARM
encoding rules.

• This ensures that negative immediates are correctly parsed for relative addressing and
arithmetic.

2



5 Usage

Compile and run the program with the path to a binary machine code file as the first argument:

javac PA2.java Register.java Output.java

java PA2 input.bin

The program outputs the assembly language equivalent of all instructions in the file with
labels denoting branch targets.

6 Potential Extensions and Improvements

• Support more ARM instruction types and extended mnemonics.

• Enhance label resolution and output formatting.

• Add error handling for invalid or unsupported instructions.

• Generate output to file rather than console.

• Add unit tests for opcode extraction and assembly conversion.

7 Summary

This project provides a straightforward ARM assembly disassembler written in Java, demon-
strating bitwise instruction decoding, label management, and output formatting. It is well-
structured into classes separating concerns for register field extraction and instruction decoding,
suitable for educational or prototyping purposes.

3


	Overview
	Key Components
	Classes

	Program Flow
	Important Implementation Details
	Opcode Decoding Logic
	Register Encoding
	Sign Extension

	Usage
	Potential Extensions and Improvements
	Summary

