Technical Documentation
ARM Assembly Disassembler

Naveen Prabakar

August 3, 2025

1 Overview

This project implements a simple ARM-like assembly language disassembler that reads binary
machine code from a file, decodes the instructions, and outputs their string assembly represen-

tation.

The program processes a binary input file, interprets 32-bit instructions according to ARM
instruction formats, and translates them into human-readable assembly mnemonic instructions
with their operands.

2 Key Components

2.1 Classes

PA2 Main entry class:

Reads machine code bytes from input file.

Processes each 4-byte instruction.

Uses Register and Output classes to decode instructions.
Prints disassembled assembly instructions sequentially.

Detects labels for branches and inserts appropriate labels in output.

Register e Encapsulates bit manipulation logic for a 32-bit binary instruction.

Output

Provides methods to extract specific parts of the instruction such as registers (Rd, Rn,
Rm), immediates, addresses, and shifts.

Contains utility to convert register numbers to their assembly register names (e.g., SP,
XZR, FP, LR, or X0-X31).

Handles sign extension and conversion of immediate values for negative numbers based
on instruction type.

e Maintains a lookup table to map opcode binary values to instruction mnemonics.
Provides a method to identify which opcode form an instruction matches.

Decodes the binary instruction into the appropriate assembly language mnemonic with
correct operands using the Register class.

Handles formatting of branch labels and condition codes.

Returns the string representation of the decoded instruction.



3 Program Flow

1. Reading the Input:

e The PA2 class opens a binary input file containing the machine code.

e The file is read 4 bytes at a time (32 bits per instruction).
2. Instruction Decoding:

e For each 4-byte instruction read, an Register instance is created to analyze the fields.

e An Output object uses the extracted opcode bits and the Register methods to decode
to the corresponding assembly instruction.

e The opcode-to-mnemonic mapping is done using a hashtable initialized in Output.
3. Label Handling:

e Branch instructions compute target addresses with sign-extended offsets.
e Labels are generated for jump targets to improve human readability.

e Labels are inserted before instructions at indicated locations.
4. Output Generation:

e The resulting assembly instruction strings are printed to standard output sequentially.

e Label identifiers (e.g., labell:) are included as appropriate.

4 Important Implementation Details

4.1 Opcode Decoding Logic

e Output.checkopcode(int) extracts and matches opcode bits of various lengths (6, 8, 10,
11 bits) against a hashtable of supported opcodes.

e Once opcode is identified, it uses that mnemonic to format operands.

e For I-type (immediate) instructions like ADDI, ANDI, immediates are decoded with sign ex-
tension.

e Branch instructions handle conditional flags and construct labels with offsets.

4.2 Register Encoding

e Registers are decoded from specific bit fields:

— Rd, Rn, Rm extracted at fixed bit positions.
— Special registers like SP, FP, LR, and XZR are named appropriately.

4.3 Sign Extension

e Immediate values for instructions that use them (like ADDI) are sign-extended as per ARM
encoding rules.

e This ensures that negative immediates are correctly parsed for relative addressing and
arithmetic.



5 Usage

Compile and run the program with the path to a binary machine code file as the first argument:

javac PA2.java Register.java Output.java
java PA2 input.bin

The program outputs the assembly language equivalent of all instructions in the file with
labels denoting branch targets.

6 Potential Extensions and Improvements

Support more ARM instruction types and extended mnemonics.

Enhance label resolution and output formatting.

Add error handling for invalid or unsupported instructions.

Generate output to file rather than console.

Add unit tests for opcode extraction and assembly conversion.

7 Summary

This project provides a straightforward ARM assembly disassembler written in Java, demon-
strating bitwise instruction decoding, label management, and output formatting. It is well-
structured into classes separating concerns for register field extraction and instruction decoding,
suitable for educational or prototyping purposes.




	Overview
	Key Components
	Classes

	Program Flow
	Important Implementation Details
	Opcode Decoding Logic
	Register Encoding
	Sign Extension

	Usage
	Potential Extensions and Improvements
	Summary

