SQL and Neo4j Data Management for Social Media Analytics

Naveen Prabakar

August 3, 2025

1 Overview

This report describes the design and management of a social media database system imple-
mented using both SQL (MySQL) and Neo4j (a graph database). The management system is
tailored to efficiently process, analyze, and retrieve complex relationships and broadcast inter-
actions found in a Twitter-like environment—including tweets, users, hashtags, mentions, and
external URLs.

The SQL portion employs structured tables—ideal for transactional data integrity and bulk
loading—while Neo4j is well suited for advanced relationship queries such as influence ranking,
network traversal, and hashtag co-occurrence analysis.

2 SQL Database Design and Management

2.1 Schema Overview

The MySQL schema is organized around key social media concepts:

e Users (Users): Stores user metadata and their network metrics (screen name, name, cate-
gory, state, followers, following, etc.).

e Tweets (Tweet): Contains tweet identifiers, content, retweet info, timestamps, and the
posting user.

e Hashtags, URLs, Mentions:

— HashTag: List of all hashtags.

— URL: List of URLs appearing in tweets.

— Mentioned: Many-to-many relation linking tweets and users mentioned within them.
— hasURL: Mapping of tweets to URLs.

— hasTag: Mapping of tweets to hashtags.

Referential integrity is enforced via foreign key constraints, ensuring data consistency (Mentioned,
hasURL, hasTag all use foreign keys to link to the main tables).

2.2 Data Ingestion

Bulk data is loaded efficiently using MySQL’s LOAD DATA LOCAL INFILE command on CSV files
(e.g., user.csv, tweets.csv, mentioned.csv, tagged.csv, urlused.csv). Duplicate rows in
hashtag and URL entity tables are safely ignored to preserve uniqueness. Post-load, integrity
is maintained through database constraints.



2.3 Query Management

A series of SQL queries were crafted to support analytic and reporting needs, including;:
e Retrieving top retweeted tweets in a given year.

e Counting hashtag spread across geographic states.

e Identifying highly followed users by political category/subcategory.

e Analyzing hashtag co-occurrence and user mention statistics.

These queries involve multiple table joins, aggregations, grouping, and filtering to extract
meaningful insights.

3 Neo4j Graph Database Integration

3.1 Motivation

SQL databases excel at structured, transactional data storage but can be cumbersome for
relationship-heavy queries involving many degrees of connections (e.g., social networks, influence
graphs). Neodj, a property-graph database, provides efficient graph traversal operations for
queries like:

e Identifying influencers connected across different topics.
e Investigating hashtag co-occurrence networks.

e Discovering shortest connection paths between users.

3.2 Data Modeling

Key graph elements include:

e Nodes: Users, Tweets, Hashtags, URLs.
¢ Relationships:

— POSTED (User —Tweet)
TAGGED (Tweet —Hashtag)

— MENTIONED (Tweet —User)

— CONTAINS_URL (Tweet —URL)
FOLLOWS (User —User)

e Properties: Attributes like follower counts, timestamps, category, and state stored on nodes
or relationships to enable rich querying.

3.3 Typical Cypher Data Load Example

LOAD CSV WITH HEADERS FROM ’file:///users.csv’ AS row
CREATE (u:User {screen_name: row.Screen_name, name: row.name, category: row.category,

R O

Other relationships (posts, tags, mentions) are similarly created to model interactions.




3.4 Sample Cypher Query Patterns

e User Influence: Counting tweets per user

MATCH (u:User)-[:POSTED]->(t:Tweet)
RETURN u.screen_name, count(t) AS tweet_count
ORDER BY tweet_count DESC LIMIT 10;

e Mention Network: Finding users mentioning each other

MATCH (a:User)-[:POSTED]->(:Tweet)-[:MENTIONED]->(b:User)
RETURN a.screen_name, b.screen_name;

e Hashtag Co-occurrence: Pairs of hashtags used together

MATCH (t:Tweet)-[:TAGGED]->(h1:Hashtag), (t)-[:TAGGED]->(h2:Hashtag)
WHERE h1l <> h2

RETURN hil.hname, h2.hname, count(*) AS usage_count

ORDER BY usage_count DESC;

4 Management Practices

e Data Consistency: Regular export/import pipelines keep SQL and Neo4j data synchro-
nized.

o Constraints and Indexes: Unique constraints and indexes in both databases prevent
duplicates and optimize query performance.

e Hybrid Workflow: SQL is used for transactional storage and bulk analysis, while Neo4;j
enhances graph queries and network analytics.

5 Use Cases and Workflows

e Use SQL queries to generate traditional reports and summaries based on tweets, users, and
hashtag usage.

e Use Neodj for advanced graph investigations like influencer detection, social network paths,
and hashtag relationship analysis.

e Develop applications or dashboards leveraging both databases according to query complexity
and performance.

6 Conclusion

By leveraging MySQL for structured, reliable, and bulk analytical workflows and Neo4j for
rich, relationship-focused graph queries, this social media data management solution efficiently
supports complex social network analysis and reporting. This dual-database strategy benefits
applications requiring both strong data integrity and sophisticated graph traversals.



	Overview
	SQL Database Design and Management
	Schema Overview
	Data Ingestion
	Query Management

	Neo4j Graph Database Integration
	Motivation
	Data Modeling
	Typical Cypher Data Load Example
	Sample Cypher Query Patterns

	Management Practices
	Use Cases and Workflows
	Conclusion

